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Abstract. Recent trends in word sense disambiguation (WSD) show
that the most effective approach is that of machine learning (ML). En-
semble learning methods such as boosting select a collection of hypothe-
ses from the hypothesis space and combine their prediction. Boosting
algorithms combine many weak hypotheses to find a highly accurate
classification rule. In this paper we describe a system that applies a
boosting algorithm to the WSD problem and present results from the
SENSEVAL-3 exercise for the Spanish lexical-sample task. Our system
SenseFinder utilizes Schapire and Singer’s Boostexter [3] implementation
of the AdaBoost.MH algorithm as the learning paradigm. We work on
a set of 46 polysemous words and use tagged and lemmatized files from
which we extract a window of 5 lemmas. This information is used to
describe the examples and to train our system.

1 Introduction

Word sense disambiguation (WSD) involves the mapping of a given word in a
text or discourse to a definition or meaning, i.e., sense, which is distinguishable
from other meanings potentially assignable to that word. The task is twofold:
determining all the different senses for every word, and finding a method to as-
sign each word to the appropriate sense [2]. Sense disambiguation is essential
for natural language processing tasks such as text processing, speech processing,
human-computer interaction, message understanding, information retrieval and
machine translation.

A wide range of symbolic and statistical or machine learning methods have
been explored to solve the problem of WSD. Despite the research efforts devoted
to tackle the problem there is no large-scale, broad coverage and highly accurate
word sense disambiguation system available at present.

In this paper, we present the use of a machine learning approach, called boost-
ing, to the problem of WSD. Boosting is a general method for improving the
accuracy of learning algorithms. It is based on the observation that finding and
combining many simple and moderately accurate “rules of thumb” is easier than
finding a single, highly accurate prediction rule. [5] To find these rules, a weak
or base learning method or algorithm is applied. The boosting algorithm calls
the weak learner repeatedly, each time with a different distribution or weighting
over the training examples. At each iteration, the weak learner generates a new
weak prediction rule, and after many iterations the boosting algorithm combines
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the weak rules into a single prediction rule. The distribution at each iteration
is chosen by placing the most weight on the examples most often misclassified
by the preceding weak rules. The combination of weak rules is done by taking a
weighted majority vote.

AdaBoost, a boosting algorithm introduced by Freund and Schapire [4], has
been studied extensively and has been shown to perform well [7],[4],[8],[6],[5]
on standard machine-learning tasks using standard machine-learning algorithms
as weak learners. The first versions of the algorithm, AdaBoost.M1 and Ad-
aboost.M2, only supported output data belonging to one class at most. Ex-
tensions to the algorithm, AdaBoost.MH and AdaBoost.MR, were designed to
solve the problem of an example belonging to various classes. The goal of Ad-
aBoost.MH is to predict all and only the correct labels, senses in our work. The
goal of AdaBoost.MR is to find a hypothesis which ranks labels so that it hope-
fully places the correct labels (senses) at the top of the ranking. BoosTexter is
a system which implements four versions of boosting based on these extensions
that we have used to test our system.

AdaBoost.MH has been successfully applied to natural language process-
ing problems such as word sense disambiguation [10], human-computer spoken-
dialogue systems [11],[12] and part-of-speech tagging and prepositional phrase
attachment disambiguation [13] as well as information retrieval tasks like text
categorization [3] and document routing [14]. Additionally, AdaBoost has been
proven to be theoretically well founded.

The paper is organized as follows. We first present in Section 2 research
done in WSD using Boosting algorithms. In Section 3 we briefly describe the
AdaBoost.MH algorithm and the BoosTexter system. In Section 4 we describe
SenseFinder, the domain of application and evaluation metric. Experiments us-
ing the BoosTexter system are described, and results and evaluation of results
are presented in Section 5. Lastly, Section 6 presents conclusions and future
work.

2 Boosting algorithms for WSD

Supervised learning has become the most successful approach to tackle the prob-
lem of WSD. These algorithms follow a two-step process. The first step is to
choose the representation of the context of the target word senses as a set of
features. Then apply a ML algorithm to train on the chosen features and assign
a sense to the target word in the test examples. Among the supervised learning
algorithms that have been applied to WSD are Naive Bayes [10], Exemplar-based
[15], Decision Lists [16], and Neural Networks [17].

Supervised learning algorithms suffer from high overhead for supervision
and additional overhead for learning/testing when scaling to real size WSD
problems. Due to this fact, research on reducing the need for supervision of
corpus-based methods for WSD is currently under way. Escudero et al. [10]
have worked on reducing the feature space for English. They have developed
a variant of AdaBoost.MH, called LazyBoosting, which has been tested on a
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medium/large sense-tagged corpus containing about 193K examples of the 191
most frequent and ambiguous English words. Results showed that boosting com-
pares favourably to the Naive Bayes and the Exemplar-based approach.

LazyBoosting is a simple modification of the AdaBoost.MH algorithm, which
consists of reducing the feature space that is explored when learning each weak
classifier. More specifically, a small subset S of features/attributes are randomly
selected and the best weak rule is chosen among them. The idea is that if the
subset S is not too small, it is more likely that a sufficiently good rule can be
found at each iteration. Additionally, no feature/attribute has to be discarded
thus avoiding the risk of eliminating relevant attributes.

The TALP system is based on the LazyBoosting algorithm [10]. The fea-
tures represent local and topical contents and domain labels. Let w; be the word
to be disambiguated, . .. w;_sw;_sW;—1 W Wip1 WipaWits - . . the context of words
around w;, and p;4 I =123 be the part-of-speech tag of Wit ;- Local context
feature patterns are represented as follows.

Pi—3;Pi—2;Pi—1; Pit1; Pit2; Pit3; Wi—2; Wi—2, Wi—1; Wit1;

Wita, (Wipa, Wi 1), (Wi 1, Wep1, and (Wep1, Wiga)

The last three patterns represent collocations of two consecutive words.

We apply BoosTexter, an implementation of the AdaBoost.MH algorithm. to
train and test the system. We use a subset of features to describe the examples
and train the classifiers similar to the one described for the TALP system.

3 AdaBoost.MH

In this section we present AdaBoost.MH (see Figure 1) designed by Schapire
and Singer’s [1],[3],[5],[11], which is an extension to the AdaBoost algorithm. It
has been designed to work for multiclass multi-label classification problems.

Input: (x1,Y1),...,(€m,Y:) where 2, € X, ), C Y

Output: Final hypothesis

T
f@) =) hi(z,l)
t=1
Initialize D (i, 1) = 1/(mk)
Fort=1,...,7 do
1. Train weak learner using distribution D, .
2. Weak learner returns weak hypothesis by : ¥ x Y - R
3. Update distribution

D, (¢, Dexp(=Yi[lJhi (2, 1))
Zy
where Z, is a normalization factor (chosen so that D4 will be a distribution)

Figure 1 AdaBoost.MH Algorithm

Dyy1(3,0) =

AdaBoost for single-label classification maintains a set of weights over train-
ing examples to force the weak learner to concentrate on examples which are
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hardest to classify; whereas for multiclass multi-label classification, the boost-
ing algorithm maintains a set of weights and labels. Training examples and their
corresponding labels that are harder to classify get incrementally higher weights.
The intention is to force the weak learner to focus on examples and labels that
will contribute more to the overall goal of finding a highly accurate classification
rule.

Let S be a sequence of training examples < (x1,Y1), ..., (@m,Ym) > where
each x; belongs to some domain or instance space X and each label Y; is in some
label set Y. Assume that Y= { -1, +1 }. As described above, AdaBoost.MH main-
tains a set of weights as a distribution D; over examples and labels. Initially,
this distribution is uniform. On each iteration ¢, the distribution is inputted
to the weak learner to compute a weak hypothesis h;. The output of the weak
learner is a hypothesis b : X x Y — R. Let [ be a label, then the sign of h(x,])
is interpreted as a prediction of the value of Y[l], i.e., whether [ is or is not
assigned to x. The magnitude of the prediction denoted | h(z,1) | is interpreted
as a measure of confidence in the prediction. The distribution D; is updated
in a manner that increases the weight of example-label pairs (x,!) which are
misclassified by h,. Testing the value of a Boolean predicate and making a
prediction based on that value is carried out using very weak hypotheses for
WSD following [13] and [10]. The predicates in our system are of the form f v
where f is a feature (word) and v is its corresponding part-of-speech and lexical
features, e.g., arte NCCS000. The predicates used are f; o v;—9, fi1 Vi1, fi Vi,
Ji+1 Vig1, Vige vigo. Formally, based on a given predicate P, we are interested
in weak hypotheses h which make predictions as follows.

coe if P holds in x, ¢j: € R
c1¢ otherwise, cir €R

h(z,1) = {

3.1 BoosTexter

In practice, the AdaBoost.MH algorithm has been implemented as the BoosTex-
ter system for text categorization tasks. BoosTexter works with data which may
be of various forms. In general, each instance or example is split up into multiple
fields. These fields may be one of the following four types: continuous-value at-
tribute (e.g., word-position), discrete-valued attribute (e.g., part-of-speech, text
string (e.g., actuar en Cannes), or scored-text string (e.g., word-frequency).

BoosTexter combines many simple hypotheses (rules) iteratively. Each hy-
pothesis (rule) consists of a simple binary test and predictions for each outcome
of the test. Depending on the type of input field the binary test has one of the
following forms.

Type Test

Discrete  Does the attribute have a particular value?

Continuous Is the value of the attribute > threshold or attribute < threshold?
Text Is the string (ngram) in given text?

Scored Is the score of the word > threshold or is the score < threshold?
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The predictions associated with each outcome of a given hypothesis (rule)
are described by a set of weights over the possible labels. The weights should
not be interpreted as probabilities.

4 SenseFinder System

The SenseFinder system was developed for the SENSEVAL-3 Spanish Lexical
Sample Task [18]. The purpose of this task is to evaluate supervised and semi-
supervised learning algorithms for WSD. Experiments are carried out on a set
of 46 words. The examples for all 46 words in both the training and test set have
been extracted from the year-2000 corpus of the Spanish EFE News Agency.
Each example has been tagged with a unique sense. Additionally, POS tagged
and lemmatized files have been provided, in which the contexts of the examples
are tokenized, lemmatized and POS tagged.

The system utilizes BoosTexter for describing the examples, training and
testing since the WSD problem can be considered as a categorization task in
which a word is assigned to a pre-existing set of senses. Our goal is to generate
a classifier for each word; each word represents a categorization problem.

The first step before applying the boosting algorithm is to extract the in-
formation to describe the examples used for training. Extraction is done by
tokenizing the tagged and lemmatized file looking for the word tagged as the
head. The next step consists of creating a window that includes the following:
withe previous two lemmas and their corresponding part-of-speech; the head’s
lemma and corresponding part-of-speech; and the following two lemmas and
their corresponding part-of-speech. Punctuation marks are ignored and diacritic
(accent) marks are removed. A sample input sentence, part of its corresponding
tagged sentence, and generated output is shown in Figure 2. Output thus gen-
erated become the training examples. The same step is applied to the test set
to generate the examples for testing.

Input Sentence:
Photopainters.com, segin los jovenes empresarios, "no es estrictamente comercial
o de arte, sino una web que une cultura popular, <head> arte</head> y tradicién”.

Input Tagged sentence:

<w frm="cultura” lem="cultura” pos="NCFS5000” />

<w frm="popular” lem="popular” pos="AQOCS0” />

<w fm:”’ » lem:”’ » pos:JJFCJJ/>

<w frm="arte” lem="arte” pos="NCCS000” head="yes” />
<wf7m:”y” lem:”y” pos:”oo))/>

<w frm="tradicion” lermn="tradicién” pos="NCFS000” />

Output:
cultura NCFS000, popular AQOCS0, arte NCCS000, y CC, tradicion NCFS000

Figure 2 Sample Sentence
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Next, a file with training examples for each word is fed to the BoosTexter
system. Once training is completed, a file with the examples from the test set
for each word is fed to the BoosTexter system. Lastly, the individual test set
files are concatenated to be evaluated.

4.1 Scoring Scheme

Evaluation of the results has been carried out by SENSEVAL-3 using an official
scorer proposed by Resnik and Yarowsky [19] and two other evaluations for the
particular task. The official scorer is derived by assigning probabilities over sense
labels generated by WSD algorithms. Given a probability distribution over sense
labels and a single known-correct sense label, the algorithm’s score should be
the probability that the algorithm assigns to the correct sense label. One of the
other scoring schemes does a more complete evaluation, including word-by-word
results and results by groups of words. Words are grouped by part-of-speech,
i.e., noun (n), verb (v), adjective (a), and by the accuracy of the Most-Frequent-
Sense baseline classifier. The third scoring scheme takes the results of a baseline
system that always assigns to each word the most frequent sense according to
the training set.

5 Experiments

In our experiments we work with 46 datasets, one per word to be trained. The
number of classes, i.e., senses ranges from 2 to 8, the number of training examples
ranges from 69 to 268; the number of examples in the test set is over half the
number of training examples (see Table 1).

Word POS Sen Train Test|Word POS Sen Train Test|Word POS Sen Train Test
ses Ex. Ex. ses Ex. Ex. ses Ex. Ex.

actuar v 3 133 67|corona n 3 124  64|partido n 2 133 66
apoyar v 3 259 128|duplicar v 2 254 126|pasaje n 4 220 111
apuntar v 4 213 106|explotar v b 212 103|perder v 4 218 106
arte n 3 251 121|ganar v 3 237 118|popular a 3 133 67
autoridad n 2 268 132|gracia n 3 72 38|programa n 3 267 133
bajar v 3 235 1ll5|grano n 3 117 6l|saltar v & 200 101
banda n 4 230 114|hermano n 2 128 66|subir v 3 231 114
brillante a 2 126 63|jugar v 3 236 117|simple a 3 117 61
canal n 4 262 131|letra n 5 226 114|tabla n 3 130 64
canalizar v 2 253 126|masa n 3 172 85|tocar v 6 158 78
ciego a 3 102 52/mina n 2 134 66|tratar v 3 143 72
circuito n 4 261 132|unatural a A 215 107|usar v 2 263 130
columna =n 7 129 64|naturaleza n 3 258 128|vencer v 3 134 65
conducir v 4 134 G66|operacion n 3 134 66|verde a 2 69 33
corazén n 3 123 62|6rgano n 2 263 131|vital a 2 131 65
volar v 3 122 60

Table 1 Set of 46 words




Boosting Applied to Spanish Word Sense Disambiguation 235

The total number of training examples used was 8430, and the total number of
test examples was 4195.

The binary-valued attributes for describing the examples correspond to five
features which constitute a very narrow linguistic context. The five features
which are a modification of those used in [10] are I; 5 pos; 2, l; 1 pos;_1, I;
pos;, Liy1 posiy1, Lipa posiya, 1 is alemma and pos is its corresponding part-of-
speech.

We trained the system using BoosTexter for each word a different number of
iterations depending on the number of examples for a word in the training set
and the different senses attributable to the word. The assumptions made are:
the more examples to be trained, the more attributes need to be examined to
determine a weak rule and the more senses for a word the higher the probability
of a word to be misclassified. The total number of iterations and the number of
hypotheses are generated per word during the learning process. Once the train-
ing was completed we ran Boostexter on the test set. The results generated were
submitted to SENSEVAL-3 for evaluation.

Overall results of the official evaluation, the POS-based evaluation, and the
Most Frequent Sense (MFS) evaluation for the test set are shown respectively
in Table 2, Table 3, and Table 4.

precision 74.09% 3108 correct of 4195 predictions

recall 74.09% 3108 correct of 4195 in total

F1score  74.09 F1 = (2*precision*recall) /(precision+recall)
coverage 100.00% 4195 examples predicted of 4195 in total

Table 2 Overall Results

POS total predicted hit coverage precision recall F1
a 448 448 347 100.00 77.46% 77.46% 77.46
n 1949 1949 1440 100.00 73.88% 73.88% 73.88
v 1798 1798 1321 100.00 73.47% 73.47% 73.47

Table 3 POS-based Average Evaluation

word-group total predicted hit coverage precision recall F1
1.MFS>95 635 635608 100.00 95.75% 95.75% 95.75
2.MFS90-95 429 429 394  100.00 91.84% 91.84% 91.84
3.MFS80-90 374 374325 100.00 86.90% 86.90% 86.90
4.MFS70-80 618 618 394 100.00 63.75% 63.75% 63.75

5.MFS60-70 523 523 361 100.00 69.02% 69.02% 69.02
6.MFS50-60 586 586 390 100.00 66.55% 66.55% 66.55
7.MFS40-50 673 673456 100.00 67.76% 67.76% 67.76
8.MFS<40 357 357180 100.00 50.42% 50.42% 50.42

Table 4 Most Frequent Sense
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Analysis of individual results for each word show that the number of features
chosen for training needs to be increased to include more features. Additional
syntactic features and/or prior knowledge are necessary to improve recall and
precision of some words such as the nouns letra, columna, gracia and verbs such
as perder, conducir, tocar, saltar. In the case of the nouns letra and columna,
the number of senses is 5 and 7 respectively, which makes the disambiguation
task more difficult; but it also may be the case that the training examples given
do not contribute to generate a highly accurate hypothesis. A similar situation
occurs with the verbs saltar with 8 senses, tocar with 6 senses and perder and
conducir with 4 senses each. Results including the top five and the bottom five
are presented in Table 5.

word total predicted hit coverage precision recall F1
usar.v 130 130 127 100.00 97.69% 97.69% 97.69
canalizarv 126 126 122 100.00 96.83% 96.83% 96.83
autoridad.n 132 132 127 100.00 96.21% 96.21% 96.21
duplicar.v 126 126 121 100.00 96.03% 96.03% 96.03
hermanon 66 66 62 100.00 93.94% 93.94% 93.94
conducirv 66 66 36 100.00 54.55% 54.55% 54.55
gracia.n 38 38 19 100.00  50.00% 50.00% 50.00
columna.n 64 64 31 100.00 48.44% 48.44% 48.44
perder.v 106 106 50 100.00  47.17% 47.17% 47.17
letra.n 114 114 50 100.00 43.86% 43.86% 43.86

Table 5 Results for 10 words

6 Related Work

Some of the supervised learning approaches applied in the Spanish Lexical Sam-
ple task were an exemplar based classifier [20], support vector machines [21],
decision trees [24], pattern abstraction, and kernel methods [22] and a combina-
tion of three classifiers [23]. The use of these approaches in the Spanish Lexical
Sample Task is briefly described next.

The exemplar-based classifier measures the similarity between a new instance
and the representation of some labelled examples. The terms are represented as
bags of contexts. Words, lemmas and senses are represented in the same space,
called Context Space, where similarity measures can be defined. In the SVM
approach each training and test item is represented as a feature with weights; its
dimensions correspond to properties of the context. A family of SVM classifiers
was constructed for the senses of each word. All positive training examples for a
word sense were treated as negative examples for all the other senses. The deci-
sion trees approach uses an ensemble of three bagged decision trees. It is based
on the idea that different views of the training examples for a given target word
will result in classifiers that make complementary errors. Thus their combined
performance will be better than individual performances. Pattern abstraction is
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a methodology which uses different knowledge sources to extract information.
This represents a limitation that has been solved with kernel methods. Kernels
are similarity functions between instances that allow the integration of different
knowledge sources and the modelling of linguistic features in SVM. The com-
bination of classifiers included a nearest-neighbor clustering classifier, a naive
Bayes classifier, and a decision list classifier; each one was trained on several
permutations of the extracted feature set, then the answers were cormbined us-
ing voting.

7 Conclusion and Future Work

Our precision, recall and F; measure were very close to the Most Frequent sense
Classifier (MFC) scores reported by the task organizer. Compared with the su-
pervised learning techniques presented, the boosting algorithm applied to WSD
of Spanish did not perform well. We found some inconsistencies in the results
for some words and are repeating experiments for those words. We have no con-
clusive results to report in this paper due to time constraints. Compared with
unsupervised learning techniques, the boosting algorithm performed better. A
detailed description of the results and system comparisons appears in [25]. Fur-
ther research includes the following tasks: testing the algorithms in other Span-
ish tagged corpora; implementing, comparing and evaluating other supervised
learning approaches; and adding syntactic features.
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